16 research outputs found

    On Distributed Storage Codes

    Get PDF
    Distributed storage systems are studied. The interest in such system has become relatively wide due to the increasing amount of information needed to be stored in data centers or different kinds of cloud systems. There are many kinds of solutions for storing the information into distributed devices regarding the needs of the system designer. This thesis studies the questions of designing such storage systems and also fundamental limits of such systems. Namely, the subjects of interest of this thesis include heterogeneous distributed storage systems, distributed storage systems with the exact repair property, and locally repairable codes. For distributed storage systems with either functional or exact repair, capacity results are proved. In the case of locally repairable codes, the minimum distance is studied. Constructions for exact-repairing codes between minimum bandwidth regeneration (MBR) and minimum storage regeneration (MSR) points are given. These codes exceed the time-sharing line of the extremal points in many cases. Other properties of exact-regenerating codes are also studied. For the heterogeneous setup, the main result is that the capacity of such systems is always smaller than or equal to the capacity of a homogeneous system with symmetric repair with average node size and average repair bandwidth. A randomized construction for a locally repairable code with good minimum distance is given. It is shown that a random linear code of certain natural type has a good minimum distance with high probability. Other properties of locally repairable codes are also studied.Siirretty Doriast

    Constructions of Optimal and Almost Optimal Locally Repairable Codes

    Full text link
    Constructions of optimal locally repairable codes (LRCs) in the case of (r+1)n(r+1) \nmid n and over small finite fields were stated as open problems for LRCs in [I. Tamo \emph{et al.}, "Optimal locally repairable codes and connections to matroid theory", \emph{2013 IEEE ISIT}]. In this paper, these problems are studied by constructing almost optimal linear LRCs, which are proven to be optimal for certain parameters, including cases for which (r+1)n(r+1) \nmid n. More precisely, linear codes for given length, dimension, and all-symbol locality are constructed with almost optimal minimum distance. `Almost optimal' refers to the fact that their minimum distance differs by at most one from the optimal value given by a known bound for LRCs. In addition to these linear LRCs, optimal LRCs which do not require a large field are constructed for certain classes of parameters.Comment: 5 pages, conferenc

    Exact-Regenerating Codes between MBR and MSR Points

    Full text link
    In this paper we study distributed storage systems with exact repair. We give a construction for regenerating codes between the minimum storage regenerating (MSR) and the minimum bandwidth regenerating (MBR) points and show that in the case that the parameters n, k, and d are close to each other our constructions are close to optimal when comparing to the known capacity when only functional repair is required. We do this by showing that when the distances of the parameters n, k, and d are fixed but the actual values approach to infinity, the fraction of the performance of our codes with exact repair and the known capacity of codes with functional repair approaches to one.Comment: 5 pages, 2 figures, submitted to ITW 201

    Construction of MIMO MAC Codes Achieving the Pigeon Hole Bound

    Full text link
    This paper provides a general construction method for multiple-input multiple-output multiple access channel codes (MIMO MAC codes) that have so called generalized full rank property. The achieved constructions give a positive answer to the question whether it is generally possible to reach the so called pigeon hole bound, that is an upper bound for the decay of determinants of MIMO-MAC channel codes.Comment: 5 pages, nofigures, conferenc

    On the Combinatorics of Locally Repairable Codes via Matroid Theory

    Full text link
    This paper provides a link between matroid theory and locally repairable codes (LRCs) that are either linear or more generally almost affine. Using this link, new results on both LRCs and matroid theory are derived. The parameters (n,k,d,r,δ)(n,k,d,r,\delta) of LRCs are generalized to matroids, and the matroid analogue of the generalized Singleton bound in [P. Gopalan et al., "On the locality of codeword symbols," IEEE Trans. Inf. Theory] for linear LRCs is given for matroids. It is shown that the given bound is not tight for certain classes of parameters, implying a nonexistence result for the corresponding locally repairable almost affine codes, that are coined perfect in this paper. Constructions of classes of matroids with a large span of the parameters (n,k,d,r,δ)(n,k,d,r,\delta) and the corresponding local repair sets are given. Using these matroid constructions, new LRCs are constructed with prescribed parameters. The existence results on linear LRCs and the nonexistence results on almost affine LRCs given in this paper strengthen the nonexistence and existence results on perfect linear LRCs given in [W. Song et al., "Optimal locally repairable codes," IEEE J. Sel. Areas Comm.].Comment: 48 pages. Submitted for publication. In this version: The text has been edited to improve the readability. Parameter d for matroids is now defined by the use of the rank function instead of the dual matroid. Typos are corrected. Section III is divided into two parts, and some numberings of theorems etc. have been change

    Capacity and Security of Heterogeneous Distributed Storage Systems

    Full text link
    We study the capacity of heterogeneous distributed storage systems under repair dynamics. Examples of these systems include peer-to-peer storage clouds, wireless, and Internet caching systems. Nodes in a heterogeneous system can have different storage capacities and different repair bandwidths. We give lower and upper bounds on the system capacity. These bounds depend on either the average resources per node, or on a detailed knowledge of the node characteristics. Moreover, we study the case in which nodes may be compromised by an eavesdropper, and give bounds on the system secrecy capacity. One implication of our results is that symmetric repair maximizes the capacity of a homogeneous system, which justifies the model widely used in the literature.Comment: 7 pages, 2 figure
    corecore